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IMAGE RESTORATION WITH A LOCALLY VARIABLE WIENER FILTER.

M. J. Lahart
University of California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

Abstract

The parametric Wiener filter is often used to deblur images that are relatively noise-
free. 1f noise is more severe, the restored image may be obscured by a granular pattern
that results when the noise is subjected to the deblurring filter. This effect may be re-
duced by using & larger noise parameter, but this leads to a restoration that is less sharp.
We describe how the noisc¢ parameter may be varied from pixel to pixel, so that it is larger
only where noise is greater. Pixels with low signal-to-noise ratios are identified by a
thresholding process and by comparison with nearest neighbors. The effects of the estimated
Wiener spe~tra on the restored image are discussed.

Intrcedicion

The application of small computers to image processing has made the development of local

processing techniques important. When memory is limited, techniques are preferred that pro-

*s+ small portions of images at a time so that an entire image might be processed in a
.-'rial manner. However, one of the most important tools in image restoration, that of
spatial filtering, is generally global in nature--Fourier transforms of entire images must
be taken before filtering can be performed by multiplication in the frequency domain. If
images are divided into smaller subimages in an attempt to approach serial processing, the
influence of the edges of the segments tecomss important. High-pass filtered images exhibit
ripples extending away from the edges if high-frequency boosting is mild; if it is severe,
the eniire filtered subimage may be obliterated by artifacts. When larger images are pro-
cessed, artifacts are less severe, but time consuming wiites to disk are necessary to inter-
changs rows and columns.

Computations are performed in the Fourier domain, because the convolution matrix is
diagonal there. In the direct domain, the solution of the equation that describes convolu-
tion is often thought to require the iiversion of a matrix with an extremely large number
of elements, sometimes as large as the square of the number of pixels in the image. We will
show that images can be deconvolved in the direct domain with the inversion of a small
enough matrix so that computations can be performsd easily. The vaiue of each pixel in the
object is estimated separately, and only a few pixels in its neighborhood are used in the
estimation. Results appear the same as global restorationg produced in the Fourier domain.

Besides fucilitating computations, local filtering offers a flexibility that is not
attainable with global techniques. Filter parameters can be varied from pixel to pixel so
chat spatially variant point spread functions or signal-to-noise ratios can be accommodated
in restoration algorithms. We will show by example how parameters can be varied to adjust
for a spatially variant signal-to-noise ratio. Our example uses a binary filter in which
one of only two sets of filter parameters are used in the restoration of each pixel. The
technique can be extendad to permit choices from much larger sets of parameters.

Exasmination of Global Techniques

We will compare local and globcl restoration techniques by blurring a particular image,
adding Gaussian random noise to it when it is appropriate to add noise, and applying the
restoration algorithm. For this purpose we will use an image that has been high-pass fil-
tered. The effects of the 1estoration procedure are easier to evaluate when *he ° age has
been enhanced in this way, becausz it acts primarily on fine detail. The low spat.al fre-
quency region often dominates the appearance of imagery, and only by reducing its relat:ve
importance to the image can improvements in high-frequency detail be examined closely.
Also, local filtering techniques should, in theory, work better on imagcs with small cor-
relation u.s*ances. Local techni?ues ignore information that is far from the area that is
restored; to 1isregard this in information is surely justified when distant regions are un-
correlated. ;ixcluding distant regions may Le justifiable more generally. We have compared
the results «f locally restoring the original image with those obtained by restoring the
high-frequs,cy portion and recombining it with the low-fraquency portion and found no dis-
cernible difterences. Further investigation of this possible equivalenrs is necessary
to reach reliable conclusions.

——— . o
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Fig. 1. Image that will be blurred and re- Fig. 2. Version of Fig. 1 that was blurred
stored. This has been high- with a 3 by 3 point spread function.
frequency boosted.

Figure 1 is a 128 by 128 image that has been subjected to a high-frequency boosting,
and Fig. 2 is a version of it that was blurred by a point spread function that approximated
a circle with a diameter of 3 pixels. We will compute both a global Wiener filter restora-
tion with a locsl restoration of this blurred image. The Wiener filter is represepted by

F(f) = g‘£§l§(22 , (11
[S(£)12A(E) + <nb>

where S(f) is the Fourier transform of ths point spread function, A(f) is an estimate of
the Wiener spectrum of the oblect, and <né¢> is the noise paremeter., Equation (1) is the
filter that, on the average. minimizes the squares of the differences between the estimated
and actual objects., In the ususl derivation of Eq. {}), the noise parameter is an assumed
noise Xariance in the image, but better restorations_can be computed in practice by treat-
ing <n%> as a free parameter. Usuglly a value of <n¢> that is smaller than the noise vari-
ance results in restorations with sharper edges and enhanced detail, but with more promi-
nent noise patterps. These are often preferred when the poise pattern can be recognized
;s such.1 When <pn*r is & free parameter, R3j. (1) has been called the "parameiric Wiener
ilter.»

No noise was added to Fig, 2 after it was blurred._ 1f the noise paraneter is zero,
the filter F(f) has singular points, snd we must set <ni> equal to n small value to make
it possible to compute F(f). The result of filtering by this F(f) is Fig. 3. The Fourier
transform of F(f}, the point spread function of the restcration process, is Fig. 4. It
extends 15 to 20 pixels fram its center, and pixels this far away from the point being re-
stored influence its estimated value,

Local Fijterinpg

The least squares restoration of an otject is a weighted sum of a firite number of
nearby image points

(k) = }:ciji(zj) , (2)
b

whese the ci; Bre chosen to minimize the expectation of the square of the difference be-
tween the estimated and actual object, The qusntity that is minimized is ciz. given by

eiz » < io(?i) - :: cijitij))z > . {3}
j .
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Fig. 3. Conventional Wiener filter restora- Fig. 4. Point spread function (Fourijer
. tion of Fig. 2. transform of filter) used to compute
Fig. 3.

The derivative of eiz with respect to each cij is found and the cij that minimize eiz are

computed by settj tais derivative equal to zero. These are functions of the correlaticn
coefficients <o(xi§i( J.)> between the object and image at different points and <1(Ri)1(x M

between spatially serarated values of the image. They are computed by solving the equation

>

< i - . +* . )
Z: €3¢ 10X > = < o(xp)ilxy) > . (4)
J -
The correlation coefficients can be expressed in terms of the autocorrelation function Ag?)

of the object, the point spread function s(X) of the imaging system, and the variance <n®>
of the noise. The relations are

2

< i1 > - fs(i'-ij)s(i" - KA R akiakte en®se (5)

and
< o(Ii)o(Ik) > -f.\(ii- X')s(X' - ik)d'i' . (6)

. We note that the correlation coefficients of widely separated points are small if
A(x) and s(X) are narrow. We vwill estimate objects in cases for which they are narrow
enough that pixels separated by more than 8 pixels have small correlation coefficients,
This should mean that pixels this far away from a point being restored need not be included
in the computations. We will solve Eq. (4) for one_particular value of the index "i,"_ and
use this to estimate o(Ii) from the image values i(x) in a 17 by 17 region that has o(x;)

at ity center. This region contains 289 pixels.

The solution of Eq. (4) for a region containing 289 image points in general requires
the inversion of a 289 by 289 watrix. The size of this matrix can be reduced when the point
s?read function is symmetric about its horizontal and vertical axes. When this is so, the
17 by 17 pixel region can be divided into 2ones such that the horizontal and vertical dis-
tance of each point in a zone from the center of the region is the same. Figure 14 is a
diagram of the first few zones; the region is divided into square pixels that are labeled
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such that pixels with the same number comprise a single zone. We estimate the value of the
center pixel labeled "i."

As a consequence of the horizontal and vertical symmetry of the point spread function,
the correlation coefficients between 2ones can be computed as a sum of correlation coeffi-
cients between individual pixels. For example, the sum of the correlation coefficients
between a pixel in zone 5 and all pixels in zone 3 is the same for all vixels in zone 5.
This means that »mbers of Eq. (4) caun be grouped to form a set of equations that describe
the relationships among zones. FKe use the coefficients to compute the estimated value of
zone 1, which consists only of the point that we estimate. There are 45 zones in our
17 by 17 region. The inversion of a 45 by 45 matrix can be performed quickly on many
computers.

Figure 5 is a local restoration of Fig. 2 that was performed in the direct domain as
described above. It is slightly smaller than Fig. 3, because we made no attempt to restore
the 8 points that are closest to the edges. That it is practically indistinguishable from
Fig. 3 indicates that this local processing technique is a satisfactory alternative for the
global Frrier domain method.

It 15 of interest to compare the weights cij that are used in Eq. (1) with the point

spread function that was used to produce Fig. 3. Figure 6 is a plot of the average weight
(weight per pixel) of each zone as a function of the distance of each zone from zone 1.

The plot has many of the same features as the point spread function, i.e., it has lobes at
roughly the same distances apart and the same size as the point spread. However, a number
of poincs are displaced from what might be a smooth curve. These differences are important.
If the weights of each zone are replaced by the values of the point spread function that
are appropriate for their distances from the center, the restoration that results is very
poor.

Correlation Function Selection

An estimate of the autocorrelation function A(X) of the object is used in the computa-
tions of the correlation coefficients of Eqs. (5) and (6). The direct-domain equation for
the object estimate is similar to Eq. (1) in the sense that this function is multiplied by
sogething that is nearly the same as its inverse when the noise estimate is small. Also,
A(x) sppears in Eqs. (S5) and (6) under integrals whose values do not depend significantly
on small fluctuations in A(x). For these reasons, good restorations can be computed for a
wide range of A(X). -

Nevertheless, values of A(x) that ere unreasonable can adversely affect the quality of
the restoration. When significant detajl is present in the image, we have used the auto-
correlation function estimate
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! Fig. 5. Local restoration of Fig. 2. Fig. 6. Average weight of each zone as a

function of the distance from
zone 1.
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A(X) = exp(~ 2n10|X|/128) if |X| < 6

P (7)
-0 if |x| > 6 ,

where |§| is a number of pixels. This expus.ential autocorrelation function is typical of
images that Sonsist of pulses of random height and length, as might occur when many edges
are present. The half-width of this autocorrelation function corresponds to the expected
frequency content of the objects whose images have been high-pass filtered as described
above. Where there is relatively little detail, a broader autccorrelation is more appro-
priate. When the autocorrelation function is too broad (or a constant) the matrix that must
be inverted to solve Eq. (4) is ill-cond.t’oned, and noise in the image is severely ampli-
fied. An autocorrelation function of the form ’

A) =1 - g |X]  if |X] < 4
(8)
= 0 if|;|>4 ,

is broader than the cxponential function of Eq. (7), yet has not led to the problems asso-
ciated with ill-conditioning. We have found it useful for images with relatively little
detail. When significant detail is present, it does not lead to restorations that are as
sharp as those produced using Eq. (7).

. Besides the restriction that the assumed autocorrelation function not be broad, there
are some other limitations on its choice that we should note. If the function is not cir-
cularly symmetric, horizontal and vertical artifacts may appear. This also occurs if the
function of Eq. (7) is not set equal to zero for |X| > 6, even though it is; small for larger
values of |X|. Also, if the autocorrelation function is very narrow, e.g., a delta func-
tion, the restoration has a granular appearance., Some empirical investigation may be neces-
sary to determine the best A(X) for a particular type of imagery.

Variable Imaging Parameters

Besides offering computational simplicity, local filtering makes it possible to adjust
filter parame:ers Lo fit local variations in the characteristics of an image. These varia-
tions may arise from a spatially variant point spread function, from signal-dependent noise,
or from a nonhomogeneous object. We will demonstrate how the last of these may be treatcd
with an object autocorrelation function and a noise parameter that varies from pixel to
pixel. We wili restore with a binary filter. Wc will use the corré€lation function of
Eq. (7) and a noise parameter of 0.006 when the signal -to-noise ratio is above a given
threshold, and we will use the autocorrelation function of Eq. (8) and a noise parameter of
0.024 when it is below the threshold. Restoration with a binary filter could be dcne glob-
ally, by computing two restorations and choosing pixels from one or the other according to
the same threshold criverion. However, the local technique is not only easier, but it could
be extended so that many more than two choices may be made. On a global scale, such an ex-
tension is very difficult, if not completely unfeasible.

Figure 7 is an image blurred with a circular poii.. spread function with a diameter of
5 pixels. Gaussian no.se is added to the picture that has a variance equal to 0.2 times
the variance of the unblurred image. Figure 8 is a restoration which uses the high-signal
filter that is described above, and Fig. 9 is a restoration that uses the low-signal filter.
Figure 8 shows a granular effect that is typical of Wiener-filter restorations; it occurs
because noise is smplified in the restoration process. This effect is not present in
Fig. 9, but the restoration is not us sharp.

Figure 10 is the result of a use of a Einary filter. The square of each pixel of
Fig. 7 was computed and those whose values were less than 0.75 of the variance of the
entire image were recomputed with the low-signal parameters. Figure 11 shows in white those
pixels that were restored using the high-signal filter.

Ne note that many of the pixels that do not look like the imagery in their surrounding
region were restored as high-signal points while points nearby were restored as low-signal
points. Isolated points such as this have been identified as noise with good results.>
Figure 12 was Kroduced from Fig. 10 by locating al! points restored with the high-signal
parameters with not more than one neighbor that was restored in this way and recomputing
these pixels with the low-signal parameters. Figure 13 shuws in white the pixels thet were
processed with high-signal parameters, The imsge of Fig. 12 is practically as sharp as the
restoration of Fig. 8 but lacks its granularity.



Fig. 7. Version of Fig. ! that was blurred Fig. 8. Figure 7 restored with a filter
with a 5 by 5 point spread function that is intended for images with
to which noise was added. high signal-to-noise ratios.

Pig. 9. Pigure 7 restored with a filter Fig, 1C. Figure 7 restored with a conbina-
that is intended for images with tion of the filters used to re-
low signal-to-noise ratios. store Figs. 8 and 9.
Conclusions

If an estimate of the object autocorrelation function is chosen properly, least
squares restorrtion can be performed in the direct domain with the same results as in the
Fouiier domain. Such restoraticn is local in the sense that the restoration of each point
depends on the values of a few nearby points and not on distant ones. If the point spread
function is circuiarly symmetric, the autocorrelation function must be too. The autocor-
relation function must approach zero smoothly, and it must be a few pixels wide. The local
nature of this restoration proves to be advantagmous because it permits adjustments to be
made to fit spatially variant imajie conditions such as variant signal-to-noise ratios.



Fig. 11. Those pixels of Fi,. 10 that were Fig. 12. Figure 7 restored with a combina-

restored with the high signal-to- tion of the high and low signal-
noise filter are white, and those to-noise filters. 1In this restora-
restored with the low signal-to- tio., isolated pixels with high
noise filter are black. values were identified as noise.
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Fig. 13. Those pixels of Fig. 12 that were Fig. 4. Zone diagram. Pixels labeled with
restored with the high signal-to- the same number comprise a single
noise filter are white and the zone.
others are black.
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